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intentional plastic pollution and the overuse of agrochemicals, 
aggravating existing threats to human, ecological, and planetary 
health. One hundred percent of the microplastic applied direct-
ly to soil and crops has the potential to pollute. Because of its 
deliberate and controlled nature, microplastic pollution from 
plastic-coated agrochemicals is especially egregious, but it is also 
readily preventable. The only barriers are public awareness of 
the problem and political will to tackle it at its source by regu-
lating the plastics industry.

This briefing exposes the underrecognized threat presented by 
the intentional use of microplastics in the agricultural sector and 
identifies priorities for halting this pervasive but preventable 
source of pollution. It reveals yet another facet of the toxic triad 
formed by agrochemicals, plastics, and the fossil fuels used to 
make them. Exposing critical questions and evidentiary gaps in 
the industry’s portrayal of plastic-coated agrochemicals as effi-
cient or sustainable, the briefing outlines why encapsulating pes-
ticides and fertilizers in plastic only compounds hazards, magni-
fying environmental and health risks. The briefing concludes 
with recommendations on ending the use of intentionally added 
microplastics in agriculture and beyond; enhancing understand-
ing of the harms of microplastics; curbing dependency on in-
dustrial agriculture and synthetic fertilizers and pesticides; and 
adopting a comprehensive global approach to plastics regulation. 

Key Findings
• Despite receiving little public attention to date, the agricul-

tural sector is one of the most significant users of intention-
ally added microplastics.

• The deliberate dispersion of microplastics in the environ-
ment through the application of plastic-coated fertilizers 
and pesticides is one of the most direct and preventable 
sources of growing microplastic pollution in agricultural 
soils.

• The use of plastic-coated synthetic fertilizers and pesticides 
is rising, with producers marketing their “controlled-release” 
function as key to sustainable, climate-friendly agriculture.

• Encapsulating agrochemicals in plastic and spreading them 
across soils and crops only compounds the significant 
health and environmental risks posed by agrochemicals and 
may exacerbate their harmful impacts.

• Governments should act now to close regulatory gaps and 
comprehensively ban the intentional use of microplastics in 
agriculture and other industries.

Tiny particles of plastic — or microplastic — are accu-
mulating across the planet in even the most remote 
areas, in the air, in water, in soil, in plants, and in 
animals, including in our bodies. Humans are ingest-

ing and breathing plastics and the toxins they contain through 
this continued environmental exposure. One of the least known 
and most concerning sources of microplastic pollution is their 
deliberate addition to synthetic fertilizers and pesticides used in 
industrial agriculture.

Plastics are everywhere in agriculture, from greenhouse films 
and landscaping fabrics to crop coverings and product packag-
ing. Many of these uses provide pathways for plastic contamina-
tion. But the application of plastic-coated agrochemicals to soils 
and crops directly introduces microplastic into the environment 
and potentially into the food supply. It also compounds the 
health and environmental hazards posed by agrochemicals 
themselves. 

One of the least known and most concerning 
sources of microplastic pollution is their 
deliberate addition to synthetic fertilizers and 
pesticides used in industrial agriculture.

Synthetic fertilizers and pesticides, derived primarily from oil- 
and gas-based feedstocks, are already some of the most toxic 
substances in use today. Encapsulating them in microplastic, 
itself fossil fuel in another form, only heightens the risks. By 
providing a vector that carries toxins, is easily dispersed, and is 
readily absorbed in the human body, the microplastic coating 
on fertilizers and pesticides combines the harmful impacts of 

Executive Summary and Key Findings
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Commercial pesticides and fertilizers are toxic and ecologically 
harmful on their own, and their overuse is causing adverse ef-
fects on human health and the environment.8 Adding a plastic 
casing to pesticides and fertilizers only compounds the negative 
effects of the chemicals. Plastics adsorb and accumulate toxins, 
including persistent organic pollutants (POPs) and other “forev-
er chemicals”— substances that do not degrade or disappear, 
and cause irreparable harm to health and the environment.9 
Consequently, the deliberate use of plastic in the manufacture of 
agrochemicals increases the presence of contaminated plastic in 
the environment and food chains.

Addressing the noxious combination of plastics and agrochemi-
cals is just the tip of the iceberg when it comes to understanding 
and unraveling the linkages between fossil fuels and industrial 
agriculture. Plastics, like most chemical fertilizers and pesticides, 
are derived from oil and gas.10 The use of plastics and agrochem-
icals in tandem exemplifies overreliance on fossil fuel-based 
products and highlights its interconnected impacts on climate 
change, biodiversity loss, and toxic plastic pollution. 

Addressing the noxious combination of plastics 
and agrochemicals is just the tip of the iceberg 
when it comes to understanding and unraveling 
the linkages between fossil fuels and industrial 
agriculture.

This briefing exposes the growing use of microplastics in agro-
chemical products, the industry’s promotion of this practice, 
and its threats to human health and the environment. It con-
cludes that, in the face of known risks and the significant prob-
ability that plastic-coated fertilizers and pesticides only add to 
existing harm from toxic chemicals and microplastic, their pro-
duction and use should be banned. 

We are increasingly living on a plastic planet. Due 
to the explosion in plastic production and use, 
plastic pollution has grown exponentially in 
recent years. Today, plastic pervades even the 

most remote areas of the globe, from the top of Mount Everest 
to the bottom of the Mariana Trench.1 We now know that plas-
tic pollution extends far beyond oceans, affecting every ecosys-
tem on Earth. Plastics have been detected in drinking water, 
farm soils, food supplies, and even in the air we breathe.2 They 
have also been found in human blood, tissue, and waste. Our 
bodies are exposed to plastic particles through an array of path-
ways, some of which scientists are only beginning to understand.3 

Plastic contamination of the food supply doesn’t start with plas-
tic packaging on the grocery store shelf. Rather, it begins with 
the seeds and soil from which food is grown. Emerging evidence 
indicates that tiny plastic fragments, or microplastics, are in-
creasingly accumulating in agricultural soils.4 Nearly one-third 
of all plastic waste could end up in soil environments.5 It is esti-
mated that microplastic pollution is four to twenty-three times 
greater in terrestrial soils than in marine environments.6 

Plastics enter the soil through multiple channels. Atmospheric 
deposition plays a large role, as do various agricultural practices, 
such as the use of plastic mulching films, wastewater irrigation, 
and the application of biosolids and compost.7 Yet there is one 
significant pathway that receives little attention, despite being 
one of the most direct and controllable sources of microplastics 
in the environment: the application of synthetic fertilizers and 
pesticides containing intentionally added microplastics. The delib-
erate deployment of plastic particles in agrochemical products, 
including those applied to food crops, poses significant risks to 
health and the environment.

Introduction
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The growing presence of microplastics in the 
environment, particularly in agricultural soils, 
means there is an increased potential for these 
tiny plastic particles to end up in our food and, 
ultimately, our bodies. 

The generation of secondary microplastics is an unintended 
though entirely foreseeable consequence of making, using, and 
disposing of plastics. Therefore, reducing secondary microplas-
tics requires addressing the plastic pollution problem more 
broadly. And ultimately, reducing plastic pollution requires dra-
matically reducing plastic production. But primary microplastics 
are in a different category. They do not become tiny fragments 
through degradation over time; they are intentionally manufac-
tured as tiny particles that readily disperse and persist in the en-
vironment. As discussed below, their production and use should 
be banned. Halting the use of microplastics in agrochemicals is 
a critical step toward that end. 

Microplastics Accumulate in 
Ecosystems and Food Chains
Evidence indicates that the continuous release and increased 
environmental accumulation of microplastics have adverse envi-
ronmental and human health impacts.16 Plastics also emit trace 
greenhouse gases (ethane and methane) as they photodegrade, 

The plastics ubiquitous in the environment come in a 
variety of shapes and sizes. The tiniest particles — 
micro- and nanoplastics — are among the hardest to 
detect and are accumulating in ever-greater amounts. 

Plastics are synthetic polymers, large chains of repeating mole-
cules derived almost exclusively from fossil fuels. Microplastics 
are microscopic particles of these polymers smaller than 5 milli-
meters. They can fragment into even smaller particles called 
nanoplastics. Because micro- and nanoplastics do not easily de-
grade, they have the potential to persist in the environment.11 
Widespread, easily ingested through food and drinking water, 
and potentially transferable within food chains,12 microplastics 
constitute what the United Nations Special Rapporteur on tox-
ics has called “an invisible threat”13 to human rights and the 
environment. 

Primary Microplastics Pollute  
by Design
Microplastics fall into two categories: “primary” and “second-
ary.” Primary microplastics are deliberately manufactured at the 
microscale. “Secondary” microplastics result from the fragmen-
tation of larger plastics.14 Primary microplastics are used in a 
wide range of industrial and consumer products, such as cos-
metics, cleansers, and paints, as well as synthetic fertilizers and 
pesticides — the subject of this briefing.15 

P A R T  1

Microplastics: Tiny Plastic Particles That Persist in the  
Environment — and in Our Bodies

Glossary 

Controlled-release technology: A method, used with both fertilizers (controlled-release fertilizers or CRFs) and pesticides, 
in which a physical barrier — typically a polymer coating — slows or modulates the release of the coated chemical ingredient(s).

Microencapsulation: A process in which tiny particles of the active ingredient(s) are surrounded by a coating, generally made 
of polymers, to create small capsules.

Plastic: Material made of synthetic polymers usually containing additives and non-intentionally added substances (NIAS).

Microplastics: Tiny plastic pieces smaller than 5 mm consisting of synthetic polymers that have low solubility in water and 
do not easily degrade. Microplastics can fragment into even smaller particles called nanoplastics (usually identified as plastic 
particles within the 1 to 1,000 nanometer range).

Polymer: Large molecule made up of a chain of repeating units, either natural or synthetic. 
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or slowly break down in the presence of sunlight.17 The growing 
presence of microplastics in the environment, particularly in 
agricultural soils, means there is an increased potential for these 
tiny plastic particles to end up in our food and, ultimately, our 
bodies. Consuming food and water that have been contaminat-
ed with micro- and nanoplastics is the main route of ingestion 
exposure for humans.18 Microplastics, depending on their size 
and type, can penetrate edible fruits and vegetables, including 
seeds, roots, and leaves.19 Therefore, if fruits and vegetables 
come from soil that has accumulated microplastics, consuming 

them may result in microplastic intake.20 Furthermore, studies 
have detected the presence of microplastics in food and beverage 
items like sugar, salt, and beer.21 

Rising public awareness of plastic pollution generally, and of the 
widespread accumulation of microplastics in particular, has 
prompted public action, such as campaigns targeting micro-
beads in cosmetics.22 Yet the intentional use of microplastics in 
other products, including agrochemicals, remains largely out of 
the public eye. 
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According to agrochemical producers, microplastics 
are deliberately added to some pesticides and fertiliz-
ers to allow for a controlled release of chemicals or 
nutrients in the product.23 Manufacturers accom-

plish this through microencapsulation, the process of wrapping 
a nutrient or chemical in a polymer material to form a small 
capsule. Controlled-release fertilizers (CRFs) use these coatings, 
typically made of plastics such as polyolefin and polyvinylidene 
chloride,24 to dispense fertilizer contents over time through os-
motic pressure.25 Likewise, some pesticide formulations enclose 
the active chemical ingredient in a microplastic coating.26 Indus-
try sources describe this “micro-capsule technology” as involving 
the intentional addition of “micron-sized hollow spheres (typi-
cally in the range of 1-50 μm) consisting of a thin polymer 
shell,” most often made of polyureas and filled with the active 
chemical ingredient.27 Beyond their use in controlled-release 
agrochemical products, microplastics are also used as fertilizer 
additives (like anti-caking agents), soil conditioners, and seed 
coatings.28 

Comprehensive figures on the use of these intentionally added 
microplastics in agriculture are difficult to obtain. Publicly avail-
able data about microplastic use is limited, and most pertains to 
cosmetics and personal care products.29 The failure of some plas-

tic pollution data to distinguish between primary and secondary 
microplastics further complicates efforts to assess the contribu-
tion of intentionally added microplastics to overall global micro-
plastic pollution.30 Moreover, even available data may not cap-
ture the full scope or severity of the problem. Because micro-
plastic particles themselves are astoundingly small, tonnage 
alone does not adequately represent the scale of their deploy-
ment in the sector, the scope of their release into the environ-
ment, or the full magnitude of the impacts from either. 

Available Data Indicate That 
Agriculture Is One of the Largest 
Users of Intentionally Added 
Microplastics 
According to a 2019 report from the European Chemicals 
Agency (ECHA), intentionally added microplastics in fertilizers, 
pesticides, and seed coatings account for almost half of the esti-
mated 51,500 tonnes (metric tons) of microplastic used each 
year in the European Economic Area (EEA).31 This figure in-
cludes an estimated 22,500 tonnes of microplastics in fertilizers, 
500 tonnes used in pesticides (capsule-suspended “plant protec-
tion products”), and 500 tonnes used in seed coatings.32 This 
means that in the EEA, the agriculture sector uses more micro-
plastics than any other sector, including cosmetics. 

In the EEA, the agriculture sector uses more    
microplastics than any other sector, including 
cosmetics. 

Global estimates of the quantity of intentionally added micro-
plastics used in the fertilizer sector vary widely. A major United 
Nations Food and Agriculture Organization (FAO) report on 
agricultural plastics published in 2021 estimates that fertilizer 
coatings account for approximately 100,000 tonnes of plastic 
used in agriculture globally each year.33 Extrapolating from fig-
ures reflecting the use of polymer-coated fertilizers in the EU, 
the FAO estimates that 440,000 tonnes of such fertilizer are 
used globally each year.34 However, self-reported data from 
some of the world’s largest nitrogen fertilizer manufacturers sug-
gest this FAO figure is a gross underestimate. For example, Nu-
trien alone claims to produce over 400,000 tonnes of polymer-
coated fertilizer annually.35 ICL Specialty Fertilizers’ reported 
annual production capacity for CRFs is approximately 200,000 

P A R T  2

The Agrochemical Industry: A Large and Growing User of 
Intentionally Added Microplastics

©  S I N G K H A M  -  S T O C K . A D O B E . C O M
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short tons.36 Another producer, Kingenta, stated in 2015 that it 
had a production capacity of around 1.7 million tonnes of 
CRFs.37 Together, the reported annual production totals from 
just these three companies would far exceed FAO’s estimate, 
suggesting that the global production and use of intentionally 
added microplastics may be much greater than recognized to 
date. The inconsistency in the figures reflects the shortcomings 
of current disclosure and reporting requirements across the in-
dustry. It also underscores that, short of a ban, more consistent 
and robust data collection efforts across governments are needed 
to track the use and impacts of primary microplastics.

Market Trends Show the Use of 
Agrochemicals with Intentionally 
Added Microplastics Is on the Rise 

According to a pre-pandemic market analysis, the global market 
for microencapsulated pesticides is expected to reach over $817 
million by 2025, growing more than 11 percent between 2018 

and 2025.38 Global usage of slow- and controlled-release fertiliz-
ers (SRFs and CRFs), including those manufactured with syn-
thetic polymers, has likewise grown significantly in recent years. 
A book published by the International Fertilizer Industry Asso-
ciation (IFA) states that between 1996 and 2005, the use of 
CRFs and SRFs reportedly increased by 45 percent.39 And it is 
still on the rise. A June 2021 publication from IHS Markit 
states, “Coated fertilizers, particularly polymer-coated products, 
have been the fastest-growing segment of the CRF and SRF 
market, and will continue to grow at a faster rate than other 
CRF and SRF types. The advent of less-expensive polymer coat-
ing technology has led to increased consumption of CRFs in 
commodity (big-acreage) agriculture, especially in North Ameri-
ca (the United States and Canada) and mainland China.”40 Ac-
cording to one market report, the global CRF market is project-
ed to grow at a compound annual growth rate of over 6 percent 
to reach a value of $3.3 billion by 2026.41 One major producer 
of CRFs, Nutrien, is reportedly looking to increase its output 
due to expected rising demand from farmers seeking what in-
dustry markets as more “sustainable” or efficient options.42 Giv-
en their high potential to pollute, however, agrochemicals with 
added microplastics are anything but environmentally sound.

©  D A V I D  -  S T O C K . A D O B E . C O M
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plastics account for more than 65 percent of all environmental 
releases of intentionally added microplastics in the EEA.47 

Synthetic polymer materials do not easily de-
grade — rather, the plastic particles accumulate 
at rates of up to 50 kilograms per hectare per 
year, polluting the soil, from where they can be 
readily dispersed in the air, by water, or through 
other vectors.

Microplastics remain in the soil environment long after the en-
capsulation has fulfilled its intended purpose.48 Synthetic poly-
mer materials do not easily degrade — rather, the plastic parti-
cles accumulate at rates of up to 50 kilograms per hectare per 
year, polluting the soil,49 from where they can be readily dis-
persed in the air, by water, or through other vectors. 

The large-scale, intentional usage of microplastics in 
the agriculture sector results in an enormous quantity 
of plastic particles entering soils each year. Agro-
chemicals that use capsules made from plastics have a 

direct-release environmental impact, meaning that all of the mi-
croplastic applied through the product to crops or soil has the 
potential to pollute.43 ECHA describes the fertilizer and pesti-
cide sectors as a source of “direct and unfiltered emissions of 
microplastics.”44 Of the estimated 51,500 tonnes of intentional-
ly added microplastics used in fertilizers, pesticides, and seed 
coatings in the EEA each year, approximately 36,000 tonnes 
(65%) end up in the environment.45 As noted above, the agri-
cultural sector is the largest single user of microplastics, account-
ing for 46 percent of all intentionally added microplastics in the 
region.46 More significantly, because all of these microplastics 
are released directly into the environment, agricultural micro-

P A R T  3

Plastic-Coated Agrochemicals Directly Release Microplastics  
into the Environment 
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ported efficiency as a key to more sustainable farming.60 Some 
industry materials refer to controlled-release fertilizers as  
“enhanced-efficiency fertilizers.”61 Others, such as ICL’s 2020 
Corporate Responsibility Report, assert that CRFs’ efficient use 
of fertilizer nutrients is important for what the company refers 
to as “sustainable agriculture.”62 And the fertilizer industry’s 
promotion of a framework it calls the “4Rs,”63 meaning right 
fertilizer, right rate, right time, and right place, encourages 
greater reliance on controlled-release fertilizers. As a fertilizer 
industry representative admitted in a 2011 article, this 4R 
framework is part of the industry’s “response to the economic, 
environmental and public relations challenges” it is facing.64

Third, the use of controlled-release products may be presented 
as more adaptable to the reality of a changing climate.65 Some 
industry actors pitch controlled-release or “enhanced-efficiency” 
agrochemicals as a solution to the pollution and other negative 
impacts of synthetic fertilizers and pesticides under the umbrella 
of “precision” or “climate-smart” agriculture.66 Fertilizer pro-
ducers claim microplastics allow nutrient release in a more tar-
geted way that can purportedly reduce losses to air or water.67 
Other claimed advantages include labor- and time-saving 
effects.68 

The evidence for such claims, however, is questionable. Data 
gaps regarding the effectiveness of controlled-release technolo-
gies at actually slowing or targeting the delivery of fertilizer69 
mean that efficiency gains may be overstated. The absence of 
“standardized methods to determine the nutrient release rate 

Plastic-coated fertilizers and pesticides are not new. CRF 
technologies were commercialized starting in the mid-
twentieth century. In 1965, Archer Daniels Midland 
(ADM) filed a patent application for slow-release fertil-

izer with “a plurality of urethane resin coatings.”50 ADM is said 
to have pioneered coated fertilizers, including Osmocote, in the 
1960s.51 The fertilizer industry acknowledged this application of 
plastic more than forty years ago. Documentation of the Fertil-
izer Industry Round Table annual meeting from 1970 states: 
“Several processes for producing coated granules of nitrogen (or 
compound) fertilizers have been announced. Controlled or de-
layed release is obtained by coating granules of soluble fertilizer 
with a plastic film, with sulfur plus additives, or with an asphalt-
wax mixture” (emphasis added).52 

Similarly, chemical manufacturers have been producing encap-
sulated pesticide formulations for over fifty years.53 According to 
a summary of a 1993 seminar on controlled-release formulations 
of pesticides, such formulations originated about twenty-five 
years prior, around 1970.54 A professional body called the Con-
trolled Release Society started up in the 1970s and held its first 
symposium in 1974, where almost half of the papers related to 
agrochemicals.55 (Other uses of controlled-release technology, 
like in pharmaceuticals, have since come to dominate the fo-
cus.56) Plastic materials like polyurethanes were used in early for-
mulations of controlled-release pesticides, as these synthetic poly-
mers met certain technical criteria and were readily available.57 

Some industry actors pitch controlled-release 
or “enhanced-efficiency” agrochemicals as a 
solution to the pollution and other negative 
impacts of synthetic fertilizers and pesticides 
under the umbrella of “precision” or “climate-
smart” agriculture.

What is new, however, is the industry’s approach to pushing 
these products into the market. Today, the industry is present-
ing plastic-wrapped agrochemicals as a planet-safe option. This 
“repackaging” of the technology manifests in several ways. First, 
product descriptions may omit the mention of plastics altogeth-
er, using instead less well-known and non-specific terms like 
“polymer” when referring to the coating material.58 Second, 
plastic encapsulation may be portrayed as a plus for the environ-
ment.59 Agrochemical industry marketing and messaging around 
controlled-release products emphasizes the technology’s pur-

P A R T  4

Old Technology, New Packaging: How Industry Sells  
Microplastics in Agrochemicals
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from CRF in a reliable way” and discrepancies between labora-
tory tests and field data70 cast doubt on industry assertions. The 
industry even acknowledges these gaps — as the IFA states in a 
2020 publication: “Due to the intrinsic nature of these prod-
ucts, it is not always possible to test the release under controlled 
–laboratory- conditions in such a way that a release properties 
under the field conditions can be automatically determined or 
predicted.”71 The IFA further notes that no test yet exists for 
comparing CRF performance in the field for a certain crop.72 

Emerging research likewise raises questions about asserted cli-
mate benefits of controlled-release agrochemicals. Studies indi-
cate that “enhanced-efficiency” or coated fertilizers may not be 
effective in reducing nitrous oxide emissions,73 which is a critical 
environmental impact of nitrogen fertilizer and a potent green-
house gas that contributes to the climate crisis.

While the agrochemical industry touts the purported advantages 
of its products, it remains largely silent on their risks.74 Accord-
ing to pesticide experts, synthetic polymer encapsulation, origi-
nally used as a protective barrier to reduce skin contact with 
highly toxic pesticides, is now used for delayed- or controlled-
release function.75 The industry asserts that microencapsulation 
minimizes the amount of pesticide used, as well as toxicity and 
environmental impacts.76 Recent research challenges this claim. 
A 2019 study from researchers at Oregon State University 
found that a common insecticide with the active ingredient en-
capsulated in nanometer-sized plastic was more toxic than apply-
ing the same active ingredient either with a larger plastic capsule 
or without any encapsulation.77 Professor Stacey Harper, envi-
ronmental toxicologist and one of the co-authors of the study 
explains, “What we’ve found is that encapsulation makes a dif-

ference in toxicity and that it is size-dependent.”78 Encapsula-
tion is thought to enhance toxicity and mobility, because it pre-
vents the active chemical ingredient from breaking down in wa-
ter, which would dilute the toxicity, and it allows the chemical 
to be transported further away from the point of application, 
enhancing potential exposure. 

According to pesticide experts, synthetic poly-
mer encapsulation, originally used as a protec-
tive barrier to reduce skin contact with highly 
toxic pesticides, is now used for delayed- or 
controlled-release function.

Plastic-coated fertilizers and pesticides are not only dangerous, 
but also unnecessary, because effective alternatives exist. There 
are a multitude of strategies for reducing the use of synthetic 
pesticides and fertilizers, including high-performing agroecolog-
ical techniques that do not rely on fossil fuel-based agrochemical 
inputs at all.79 But even in the case of the market for coated, 
controlled-release products, there are non-toxic alternatives, 
such as inorganics like sulfur and organic materials.80 The indus-
try has claimed that plastic provides more favorable technical 
properties for the controlled-release function than other materi-
als.81 However, research into biodegradable coatings has been 
underway since at least the 1990s,82 and in recent years, has 
been accelerating the shift towards improving and utilizing nat-
ural and biodegradable materials for coatings.83 

Contrary to the industry’s narrative, the rising use of controlled-
release agrochemicals, particularly those formulated with plastic 
encapsulation, is only accelerating the problem of microplastic 
pollution and increasing the risk of harm to ecosystems and hu-
man health. 
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T E X T  B O X :

Producer Profiles: Agribusiness Giants and Specialty Firms Focus on Coated Fertilizers and Pesticides

Nutrien, Koch Agronomic Services, ICL Specialty Fertilizers, and Kingenta Ecological Engineering Group Co. are 
among the largest producers of controlled-release fertilizers (CRFs) and slow-release fertilizers (SRFs).i Other major 
producers of CRFs and their plastic coatings include plastics producers like Dowii and chemicals producers like 
BASF, Haifa Chemicals, and Mitsubishi Chemical.iii Bayer, BASF, Syngenta, and FMC Corporation — four of the 
top five biggest pesticide companies — are among the key players in the microencapsulated pesticide market.iv 

The producers named above are not the only companies making plastic-coated agrochemicals. The practice of coat-
ing fertilizers and pesticides is fairly widespread across the industry and geographic regions. The manufacturers in-
volved in this practice have the greatest power and responsibility to alter their products to avoid this non-essential 
use of plastic material. The following listed companies are examples of firms that manufacture coated fertilizers and 
pesticides. With the exception of Syngenta and Koch Agronomic Services, these companies are publicly traded.

Nutrien: 
Headquarters: Saskatoon, Saskatchewan, Canada

Nutrien is one of the world’s largest fertilizer companies and the third-largest producer of nitrogen fertilizer, with a 
production capacity of over 11 million tonnes of nitrogen.v The company operates sixteen nitrogen production fa-
cilities in the United States, Canada, and Trinidad. Nutrien produces over 400,000 tonnes per year of a CRF made 
with a polymer coating, marketed as “Environmentally Smart Nitrogen” (ESN).vi This polymer-coated fertilizer is 
produced at two facilities in North America — one in Alberta, Canada, and one in Missouri, United States.vii Nu-
trien and its predecessor Agrium have produced this polymer-coated fertilizer since 2000.viii Nutrien reportedly has 
a production capacity of more than 450,000 tonnes (annually) for ESN,ix and the company plans to increase its 
ESN production.x 

ICL Specialty Fertilizers: 
Headquarters: Tel-Aviv, Israel

ICL Specialty Fertilizers is a subsidiary of parent company ICL Group, an Israeli multinational corporation that 
produces specialty minerals (including fertilizers) and chemicals.xi The company produces CRFs at facilities in the 
Netherlands, the US, and Brazil.xii The coated CRFs and other fertilizer products are intended for ornamental hor-
ticulture, turf, and agricultural applications. ICL Specialty Fertilizers’  Osmocote product is a leading coated fertil-
izer used in ornamental horticulture,xiii and for agricultural crops, the company produces branded CRFs such as 
Agroblend and Agrocote.xiv ICL Group’s annual production capacity for CRFs is approximately 200,000 tons.xv 

Kingenta: 
Headquarters: Linyi, Shandong, China

Kingenta Ecological Engineering Group Co. is a Chinese enterprise that produces various fertilizer products such as 
compound fertilizer, water-soluble fertilizers, SRFs, and CRFs. Its annual fertilizer production capacity is over 7 
million tons,xvi and its production bases are located in eight provinces throughout China. Kingenta’s production 
capacity for SRFs and CRFs (as of 2016) is around 1.7 million tonnes,xvii and Kingenta manufactures the lion’s 
share of China’s growing output of these coated fertilizers.xviii The company makes CRFs using polymer coatings 
— including plastic.xix 

This text box continues on the next page.
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T E X T  B O X  ( C O N T I N U E D ) :

Producer Profiles: Agribusiness Giants and Specialty Firms Focus on Coated Fertilizers and Pesticides

Koch Agronomic Services: 
Headquarters: Wichita, Kansas, United States

Koch Agronomic Services, an affiliate of Koch Fertilizer — a major US synthetic fertilizer producer and part of 
Koch Industries — manufactures “enhanced-efficiency” fertilizers, including coated controlled-release products and 
fertilizer additives. Examples of its branded CRFs include Polyon and Duration CR, which are both used in turf 
and landscaping and specialty agriculture applications.xx Polyon uses a polyurethane coating, which, as the manu-
facturer notes, does not degrade, and the coating’s microscopic fragments become incorporated into the soil profile.xxi 
In 2019, Koch sold Polyon off to a company called Harrell’s. Under the agreement, Harrell’s will custom manufac-
ture the product for Koch, and Koch will hold exclusive rights to the brand in certain international markets.xxii Du-
ration CR fertilizer also uses a polymer coating and is now marketed and distributed by an entity called Allied 
Nutrients.xxiii

BASF: 
Headquarters: Ludwigshafen am Rhein, Germany

BASF is a German-headquartered multinational chemical firm and one of the world’s largest producers of pesti-
cides, which are manufactured under the company’s “Agricultural Solutions” division. As one of the top five corpo-
rate pesticide producers, BASF does make pesticides with a microencapsulated formulation. Examples include an 
encapsulated insecticide called Fastac CS,xxiv the DuraGuard ME microencapsulated insecticide,xxv and a controlled-
release insecticide product branded as Cy-Kick CS.xxvi BASF also manufactures a polymer coating for CRFs, specifi-
cally a patented polyurethane coating.xxvii 

Dow: 
Headquarters: Midland, Michigan, United States

Dow, a major chemical company and one of the world’s largest plastic producers, is a supplier of the plastic encap-
sulation technology used by agrochemical companies. Dow manufactures a polyurethane coating for controlled-release 
fertilizers, and the company has a web page illustrating the purported benefits of its fertilizer encapsulation.xxviii Dow 
also makes encapsulation and capsule suspension technology for pesticides.xxix Dow has a long history of working in 
agribusiness markets and the agrochemical space; DowDupont was previously a leading pesticide producer, but in 
2019 the entity spun off its agriculture business into a separate company called Corteva Agriscience.xxx 

Syngenta: 
Headquarters: Basel, Switzerland

Syngenta is a global agrochemical corporation (under the parent organization ChemChina) that manufactures seeds 
and pesticides. Created in 2000 through the merger of the respective agrochemical businesses of Novartis and As-
traZeneca, Syngenta was acquired by the China National Chemical Corporation (ChemChina) in 2015 and subse-
quently merged with the agricultural business of SinoChem.xxxi It is among the top five largest pesticide producers 
in the world. The company, therefore, has a stake in the microencapsulated pesticide market. Syngenta makes, for 
example, an insecticide product called Demand CS for controlled-release application using a patented microencap-
sulation technology called iCAP.xxxii
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“global human rights concern.”93 Several groups of people are 
particularly vulnerable to pesticide exposure and face higher risk 
from pesticide use, including those living near farmland, Indig-
enous Peoples, pregnant and breastfeeding people, and children. 
Less stringent regulations and compliance mechanisms have ex-
acerbated the situation in some countries.94

Chemical fertilizers are one of the main drivers of agricultural 
GHG emissions and are especially harmful from a climate per-
spective.95 Synthetic nitrogen fertilizer is made from fossil fuels, 
and the production process is incredibly emissions intensive. 
Additional GHG emissions occur once the fertilizer is applied to 
soils. Once treated with synthetic nitrogen fertilizer, agricultural 
soils emit both carbon dioxide and nitrous oxide — the latter is 
a more potent driver of climate change, nearly 300 times more 
heat-trapping than CO2, and has been rising at alarming rates, 
primarily driven by the overuse of nitrogen fertilizers.96 Accord-
ing to the Intergovernmental Panel on Climate Change (IPCC), 
studies indicate that agricultural emissions of nitrous oxide have 
increased by more than 45 percent since the 1980s, due mainly 
to the widespread use of nitrogen fertilizer and manure.97 Re-
search published in 2021 found that the synthetic nitrogen sup-
ply chain was responsible for over 20 percent of all direct emis-
sions from the agricultural sector in 2018, generating more 
greenhouse gases than the aviation sector did that same year.98

Neonicotinoids can affect the plant on a system-
ic level. For this reason, they can become toxic 
or deadly not only to the target organisms but 
also to non-target species, such as pollinators. 

Furthermore, the use of pesticides and fertilizers can pollute soil 
and freshwater, which may aggravate water scarcity and broadly 
affect biodiversity.99 The case of neonicotinoids is a staggering 
example: often used in seed coatings, these widely used systemic 
pesticides are chemically similar to nicotine. Neonicotinoids are 
particularly concerning because they can affect the plant on a 
systemic level, meaning they can pass from the roots to the 
leaves, flowers, pollen, and nectar. For this reason, they can be-
come toxic or deadly not only to the target organisms but also 
to non-target species, such as pollinators.100 These effects may 
not be limited to exposed organisms but can alter reproduction 
for generations.101 Concern about such impacts prompted the 
EU to ban the use and sale of seeds treated with certain neonic-
otinoid pesticides due to their acute risks for bee populations.102 

Agrochemicals and their overuse already pose serious 
risks for human health and the environment at multi-
ple scales — from impacts on farmworkers, local com-
munities, and those exposed to pesticide-contaminated 

food products to regionally and globally significant impacts on 
pollinators, insect biomass, coastal and estuarine ecosystems, 
and the global climate.84 Adding microplastics to the mix intro-
duces new risks, compounding the potential for harm. Plastic 
generally contains toxic additives and can be a carrier of other 
pollutants.85 The confluence of chemicals in the agricultural 
sector may cause adverse impacts on both soil health and human 
health, as microplastics accumulate in ever greater volumes in 
farmland and, ultimately, in our bodies.

The Intrinsic Risks of Synthetic 
Pesticides and Fertilizers 
On their own, pesticides and fertilizers pose numerous risks: 
exposure to pesticides has been linked to adverse effects on hu-
mans, ranging from reproductive disorders to cancers,86 while 
fertilizers are a primary driver of agricultural greenhouse gas 
emissions (GHG). 87 Some synthetic pesticides, called highly 
hazardous pesticides (HHP), have been associated with excep-
tionally high levels of acute or chronic harm and are recognized 
by the international community as an “issue of concern.”88 As 
early as 2006, the FAO recommended a progressive ban on 
HHPs,89 although implementation has lagged. The use of 
HHPs is particularly concerning for agricultural workers and 
farmers, who face greater exposure at higher doses and for ex-
tended periods, which can result in poisoning (in some cases, 
death).90 Research cited by the International Labor Organization 
has shown that “[p]esticide poisoning represents a major occu-
pational health crisis with estimates indicating that up to 44 
percent of farmers are poisoned every year.”91 But this is not 
inevitable: The aggressive promotion of pesticides to ensure 
“food security” has been denounced by UN independent experts 
as a misleading myth.92 A dangerous disconnect exists between 
the recognized risks of these chemicals and the narratives that 
the industry has developed to promote them as safe and  
sustainable.

The negative impacts of pesticide exposure go beyond workers’ 
health, and UN independent experts have called pesticides a 

P A R T  5

Compounding Risk: Agrochemicals Plus Microplastics Equals a 
Toxic Combination
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Microplastics Are a Carrier for  
Toxic Chemicals
Coating agrochemicals with plastic material is especially con-
cerning, given the inherent health and environmental impacts 
and routes of exposure to toxic chemicals associated with plastic. 

Microplastics, in particular, raise several health concerns because 
of their intrinsic: 1) physical hazards and potential to accumu-
late in the human body and move through biological barriers; 2) 
chemical components, such as residual molecules (monomers) 
and chemical additives; and 3) capacity to adsorb contaminants 
from the external environment and act as carriers of chemical 
mixtures. This last point led the United Nations Environment 
Programme (UNEP) to coin the phrase “the new toxic time 
bomb,” referring to marine plastics, particularly microplastics, as 
a transport vector for toxic chemicals.103

Physical Hazards of Tiny, Mobile  
Plastic Particles

Due to the physical hazards of the particles, microplastics raise 
numerous health concerns of their own.104 

Microplastics are ubiquitous in the environment, and growing 
evidence indicates they are entering the human body on a daily 
basis through ingestion and inhalation.105 New research has de-
tected microplastics in human lung tissue sampled from living 
patients, further supporting inhalation as a direct route of expo-
sure.106 Once in the human body, microplastic particles can a) 
deposit, accumulate, and cause inflammation, or b) translocate, 
for example, from the guts or the lungs to other parts of the 
body, such as other organs and tissues.107 Microplastics have 
been detected in the human bloodstream,108 meaning that blood 
can be the “transport pathway for oxygen, nutrients and poten-
tially also plastic particles around the body to other tissues and 
organs.”109 The scientists who made this discovery concluded 
that “it is certainly reasonable to be concerned.”110 Microplastics 
also have been detected in human stool, both in adults and in-
fants, in many parts of the world,111 proving that ingested parti-
cles can pass through the gastrointestinal tract and that all food 
chains are likely contaminated.112 Furthermore, new evidence 
shows that microplastics may even cross the human placenta.113 

According to several studies, some of the potential health effects 
of microplastic exposure include neurotoxicity, metabolic distur-
bances, and increased cancer risk.114 Microplastics in the human 
body may result in health impacts such as inflammation, oxida-
tive stress, and cellular mutations or cell death, which are associ-
ated with diseases and conditions like heart disease, cancer, chron-
ic inflammation, rheumatoid arthritis, diabetes, and more.115 

While additional research is needed to assess the full extent of 
microplastics’ persistence and effects in the human body, a 
growing body of scientific literature demonstrates that ingested 
and inhaled microplastics may cause harm due to their physical 
presence, their chemical burden, and/or the microbial commu-
nities they carry.116 Effects could include immune and stress re-
sponses and reproductive and developmental toxicity.117 Preg-
nancy, infancy, and childhood are sensitive windows for human 
development, and the current assessments of evidence around 
early life exposures to micro- and nanoplastics provide yet an-
other cause for concern and justification for the use of the pre-
cautionary principle.118 That foundational principle, discussed 
further below, requires that, in the absence of scientific certainty 
or consensus, governments should act with caution and dili-
gence to avoid causing harm to health and the environment, 
including through the regulation of hazardous substances.119

Toxicity of Additives and Chemicals  
Used to Produce Plastics

The health risks posed by micro- and nanoplastics are not limit-
ed to the presence and accumulation of particles in the human 
body. Microplastics can also contain hazardous additives and 
other substances from the plastic manufacturing phase that pres-
ent their own health risks.120 Many toxic additives in plastic are 
endocrine-disrupting chemicals (EDCs) like bisphenol A and 
phthalates, with wide-ranging negative health impacts, even at 
extremely low doses.121 These include neurological and behavioral 
effects, obesity, infertility, genital malformations, decreased 
sperm count, and hormone-sensitive cancers such as prostate 
and breast cancer.122 

Plastics release chemicals over time, including 
as they fragment, presenting humans and     
wildlife with potential exposure to an assort-
ment of toxins associated with health impacts 
like oxidative stress and endocrine disruption.

Because of how plastics are manufactured, these chemicals are 
not always bound to the plastic material. Plastics release chemi-
cals over time, including as they fragment, presenting humans 
and wildlife with potential exposure to an assortment of toxins 
associated with health impacts like oxidative stress and endo-
crine disruption.123 While complete information on the chemi-
cals, monomers, additives, and processing aids used in plastics is 
still lacking, plastics can contain more than 10,000 substances124 
and potentially tens of thousands more.125 According to one 
conservative study, over 2,400 substances used in plastic pro-
duction were “identified as substances of potential concern as 
they meet one or more of the persistence, bioaccumulation, and 
toxicity criteria in the European Union.”126 Furthermore, “cer-
tain plastics have been shown to leach over 80% of their chemi-
cals into water, highlighting the potential for human exposure.”127 
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External Toxins Absorbed in Plastics

Microplastics may further adsorb and serve as a vector for other 
contaminants from the environment,128 resulting in a “cocktail 
of contaminants”129 for human health. A report published by 
the Canadian government on the state of the science regarding 
the potential health and environmental impacts of plastics pol-
lution identified the risk posed by microplastics’ transport of 
chemicals: “In addition to the physical hazards presented by 
plastic particles themselves, it is possible that effects could occur 
as a result of exposure to residual monomers, chemical additives, 
and sorbed environmental contaminants (e.g., persistent organic 
pollutants [POPs] and metals) that may leach from microplastic 
particles.”130

As a result, “[m]icroplastics that accumulate in the body are a 
source of chemical contamination to tissues and fluids. A variety 
of chemical additives in plastic, plastic monomers, and plastic 
processing agents have known human health effects. For exam-
ple, several plasticizers, such as bis(2-ethylhexyl) phthalate 
(DEHP) and BPA, can cause reproductive toxicity. Others, such 
as vinyl chloride and butadiene, are carcinogens. Benzene and 
phenol are mutagenic (i.e., they change the genetic material, 
usually DNA, of an organism, increasing the frequency of muta-
tions). Some of the harmful additives include harmful chemicals 
known to leach from plastic polymers such as antioxidants, UV 
stabilizers, and nonylphenol.”131

However, the lack of full transparency about the chemical composi-
tion of plastic material (e.g., what additives and non-intentionally 
added substances are present) makes it impossible to fully assess 
the risks and potential health impacts.

Dangerous Interaction:  
Chemicals and Coatings

Notwithstanding the widespread and growing use of plastic-
coated pesticides and fertilizers, there has been little research on 
whether the toxic residues from pesticides and fertilizers can be 
entrained in the microplastics themselves and thus moved deep-
er into the food system through the plastic coatings. However, it 
is known that microplastics can adsorb and concentrate toxics, 
including in the case of plastics used in agriculture.132 Studies 
also make clear that plastic and agrochemicals can interact gen-
erally. For example, a review article discussing plastic in agricul-
tural soil as a risk for drinking water indicates that plastic may 
facilitate pesticide transport through soil, eventually leading to 
groundwater contamination.133 The article notes that while plas-
tic and pesticide interactions in soil systems are “likely to oc-
cur,” they remain “poorly explored.”134 Furthermore, microplas-
tics may multiply the effects of toxic chemicals, such as heavy 
metals, already present in the soil, creating the potential for 
“combined effects on soil microbial community,”135 as further 
discussed below.

Microplastics Disturb Soil Ecosystems

The adverse impacts of microplastics extend beyond human 
health to ecosystem health, particularly to agricultural soils, 
which form the foundation of food production. The presence of 
micro- and nanoplastics in the food chain may contribute to 
plant stress and raise numerous food safety concerns.136

©  A N D R E A S  S C H U L Z E  -  S T O C K . A D O B E . C O M
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Studies suggest that microplastic presence in soils could already 
be affecting soil health,137 and recent research has documented 
“adverse effects of [microplastics] on growth, reproduction, 
feeding, survival, and immunity level of the soil biota.”138 Ac-
cording to one study, research shows that microplastics in agri-
cultural soils, together with pollutants they may have adsorbed, 
can affect soil health and function in both the aboveground and 
underground parts of the soil ecosystem, and can be taken up by 
plants and transferred along the food chain.139 Microplastics 
may, for example, impact and disturb the biophysical properties 
of soil, like bulk density and microbial activity.140 The potential 
effects on the soil microbiome are important because the micro-
biome underlies the role of soil in regulating biogeochemical 
cycling, which is key for healthy ecosystems and their functions, 
for example food security. Microplastic accumulation in soil 
may therefore interfere with nutrient cycling (by altering the 
soil’s bacterial composition, for example), and it can affect the 
rooting ability of plants and may exacerbate plant damage in 
combination with other pollutants.141 

Research also shows the wide-ranging effects of microplastics on 
organisms that play a vital role in maintaining healthy soil. For 
example, emerging evidence indicates that microplastics in soil 
negatively affect earthworms’ growth rate and overall health.142 
Reducing the size and vigor of earthworm populations could 
impair soil quality and functioning. On the other hand, soil or-
ganisms like earthworms may facilitate the integration of micro-
plastics deeper into soils, which could increase the risk of 
groundwater contamination and result in microplastics disinte-
grating into nanoplastics that are even more easily transferable 
(e.g., uptake by plants).143 Emerging evidence also suggests that 
chemical additives in plastic can leach into soils, harm earth-
worms and other soil fauna, and disturb soil function.144

Furthermore, by negatively impacting soil health and bacterial 
composition, microplastic pollution may also reduce the soil’s 
ability to absorb and store carbon dioxide, potentially impairing 
the role of agricultural soils as a carbon sink. However, more 
research is needed to better understand how microplastics inter-
act with these processes.145

By negatively impacting soil health and bacterial 
composition, microplastic pollution may also   
reduce the soil’s ability to absorb and store   
carbon dioxide, potentially impairing the role   
of agricultural soils as a carbon sink.

The data are clear: The intentional use of microplastics in agro-
chemicals contributes to the growing accumulation of micro-
plastics in soils. Given the science suggesting adverse ecological 
and human health impacts from this increasing exposure, gov-
ernments must act to halt the deliberate use of microplastics in 
agrochemicals and other products. 

The Need for a  
Precautionary Approach
The growing scientific evidence on the hazards of microplastic 
— with its characteristics of toxicity and persistence and the 
potential to serve as a vector for other toxins — reveals signifi-
cant grounds for concern and justifies measures to prevent the 
production, use, and release of microplastics. The use of micro-
plastics in combination with hazardous pesticides or fertilizers 
further compounds these health and environmental risks — 
risks that are only more acute because the substances are applied 
directly to crops that form a critical part of the human food supply. 

The significant potential for adverse impacts from microplastic 
pollution, and the compounded risks resulting from its inten-
tional use in agriculture, warrant regulatory action consistent 
with the precautionary principle.146 As the Group of Chief Sci-
entific Advisors of the European Union recognized in its 2019 
Scientific Opinion on the environmental and health risks of mi-
croplastic pollution, the precautionary principle, together with 
the principles of prevention and of preventing pollution at the 
source, may properly be invoked to stop the distribution of 
products such as these “when there is scientific uncertainty 
about a suspected risk to human health or to the environment” 
arising from its use.147 As discussed above, a growing body of 
research points to the significant adverse impacts of microplastic 
pollution. There is reason to believe that intentionally adding 
microplastics to agrochemicals could increase toxicity and mul-
tiply exposure pathways. Residual uncertainties around the se-
verity and extent of risks to human health and ecosystems from 
microplastic pollution and the use of microplastics in agricul-
ture148 cannot justify continued inaction or the lack of protec-
tive measures. 
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The EU, however, is currently considering restricting intention-
ally added microplastics used in a wide range of industries and 
products, including in the agriculture sector. In 2019, ECHA 
issued a report158 detailing the proposed restriction, which is 
based on a scientific assessment undertaken at the request of the 
European Commission. The proposal is expected to prevent the 
release of up to 500,000 tonnes of microplastics over twenty 
years.159 The restriction would significantly impact CRFs and 
fertilizer additives, with nearly two-thirds (>65%) of the expect-
ed prevention of microplastics release (or approximately 
262,500 tonnes) coming from the fertilizer sector alone.160 For 
pesticides and coated seeds, the estimated release prevention is 
15,000 tonnes.161 

The rising regulatory risks have not gone unnoticed by the in-
dustry. For example, Bayer — one of the biggest pesticide pro-
ducers and a key player in the microencapsulated pesticide mar-
ket162 —acknowledged in its 2021 Annual Report that residues 
of its chemical products and microplastics in the environment 
could face more stringent regulation.163 

The threat is clear: As UNEP has stated, “continuous 
use and releases of microplastics will lead to increas-
ing accumulation of microplastics in the environ-
ment and thus increasing exposure and risks.”149 And 

the source is known or knowable: The addition of microplastics 
to a variety of products, including agrochemicals, is an inten-
tional act by the companies involved. And yet, while primary 
microplastic pollution is preventable, as UNEP notes, regulation 
is lagging: “[T]he current level of action is not yet adequate for 
addressing sound management of intentionally added 
microplastics.”150

To date, regulatory action concerning the intentional use of mi-
croplastics has been mostly limited to addressing microplastics 
in personal care products. According to ECHA, “very few coun-
tries outside of the EU have already introduced bans on inten-
tional use of microplastics,” and those that have targeted person-
al care products like wash-off cosmetics and cleaning products, 
not agricultural chemicals.151 In the United States, for example, 
a federal law, the Microbead-Free Waters Act of 2015, bans 
plastic microbeads in rinse-off cosmetics.152 The US has yet to 
take comprehensive action to address microplastic pollution, 
however, including microplastic accumulation in soils. State-level 
action on microplastics is also limited, although California is 
taking steps to address microplastics in drinking water153 and in 
the state’s coastal and marine environments.154 California’s 
“Statewide Microplastics Strategy,” released in 2022, notably 
references plastic use in agriculture and indicates future research 
and investigation could involve monitoring microplastics in ag-
ricultural soils and targeting the agricultural sector to reduce 
microplastic pollution.155 A bill is also pending in the California 
state legislature that would ban intentionally added microplas-
tics from certain products, including cosmetics, detergents, wax-
es, and polishes.156 Several other countries such as Canada, 
South Korea, and New Zealand have banned plastic microbeads 
in cosmetics and personal care products.157 There remain con-
siderable regulatory gaps worldwide addressing intentionally 
added microplastics in products, especially beyond the cosmetics 
sector. 

According to ECHA, “very few countries outside 
of the EU have already introduced bans on in-
tentional use of microplastics,” and those that 
have targeted personal care products like wash-
off cosmetics and cleaning products, not         
agricultural chemicals.

P A R T  6

Preventable Pollution: Curbing the Use of Intentionally  
Added Microplastics 
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The EU’s drafting of a proposed restriction is an important first 
step to addressing the pervasive presence of microplastics in cer-
tain products like agrochemicals. The transition periods for ag-
rochemicals included in the proposal, however — eight years for 
pesticides and five years for fertilizer and seed treatments — 
would result in the substantial additional release of microplastics 
to the environment.164 Non-plastic alternatives165 already exist 
for most of the agricultural uses of microplastics.166 Accordingly, 
there is no justification for allowing the continued use of micro-
plastics in fertilizers and pesticides.

Non-plastic alternatives already exist for most of 
the agricultural uses of microplastics. Accordingly, 
there is no justification for allowing the continued 
use of microplastics in fertilizers and pesticides.

Biodegradable materials for CRFs are available and will be re-
quired in the coming years, per a new EU regulation. The Euro-
pean Commission’s 2019 Fertilising Products Regulation re-
stricts polymer-coated fertilizers to formulations that comply 
with biodegradability criteria.167 The restriction will take effect 
in 2026 for all EU Member States. Substituting plastic with bio-
degradable or natural materials, however, does not address the 

larger problem of the dangerous and unsustainable overuse of 
agricultural chemicals. 

Other jurisdictions outside the EU should follow suit and take 
action to address the intentional use of microplastics in prod-
ucts, particularly coated fertilizers and pesticides. So, too, should 
relevant international institutions, such as the World Health 
Organization, follow the lead of bodies like the FAO, whose 
2021 report on agricultural plastics recommends restrictions on 
plastic-coated fertilizers and pesticides.168 Key places for regula-
tory action include the US and Canada, where consumption of 
polymer-coated fertilizers has grown in recent years.169 Canada 
has established a new rule requiring the registration of fertilizer 
products that contain polymers,170 indicating heightened con-
cern about these products. But this regulation falls short of re-
stricting or prohibiting the use of synthetic polymers in fertiliz-
ers. Asia is another significant market for these products: China 
is a major producer and user of CRFs. In Japan, evidence shows 
that microplastics, specifically from coated fertilizers, accumu-
late in agricultural soil, including paddy fields.171 Absent restric-
tions on plastic usage in agrochemicals, plastic-coated fertilizers 
and pesticides will continue to be a source of microplastic pollu-
tion in the world’s soils and contribute to accumulation in the 
environment and in human bodies. 
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principle warrants carefully crafted and comprehensive re-
strictions on the intentional uses of microplastics. Such re-
strictions must be geographically and sectorally comprehensive, 
expanding beyond the EU and addressing all intentional uses, 
including in agriculture. Rather than capitulating to corporate 
demands, regulators should act in the public interest by swiftly 
regulating and ultimately banning the intentional use of micro-
plastic in products. The FAO’s 2021 report on agricultural plas-
tics, for example, recommends banning non-biodegradable 
polymer-coated fertilizer, seeds, and pesticides.172 The use of 
synthetic polymers and intentionally added microplastics in ag-
riculture and horticulture should be phased out rapidly, system-
atically, and completely. States should set short-term monitor-
ing measures and reduction targets for microplastic release with 
the aim of achieving zero intentional releases of microplastics in 
the long run. 

2) Deepen research on the harms of 
microplastics and impose strict industry 
disclosure requirements

There is a pressing need for more research and far greater in-
dustry disclosure on the extent of microplastic usage in agro-
chemicals, the full chemical composition of products, and their 
potential environmental and health impacts. The FAO report 
on agricultural plastics recommends further research to fill data 
gaps and calls on governments to start collecting data on agri-
cultural plastics use and their fate.173

Until a ban on the intentional use of microplastics comes into 
effect, enacting and enforcing stronger disclosure requirements 
is especially important for agrochemicals formulated with a mi-
croplastic coating. Such requirements should compel plastic and 
agrochemical companies to adequately test and fully disclose all 
chemicals intentionally added to their products in addition to 
known or likely chemical contaminants that may be added or 
created during manufacturing processes.

3) Curb dependency on industrial 
agriculture and chemical fertilizers and 
pesticides 

The intentional use of microplastics in agrochemicals provides 
yet another reason to dramatically reduce dependence on 

Halting the accumulation of microplastics in the en-
vironment is critical for human health, biodiversity, 
and the climate. One of the most controllable 
sources is the intentional addition of microplastics 

to agrochemical products. In order to confront the problem, 
policymakers should prioritize measures to 1) end the use of 
intentionally added microplastics in the agricultural sector and 
across all manufactured products, 2) deepen research on the 
harms of microplastics and impose strict industry disclosure re-
quirements, 3) curb dependency on industrial agriculture and 
chemical fertilizers and pesticides, and 4) adopt a comprehensive 
global approach to plastics regulation.

1) End the use of intentionally added 
microplastics in the agricultural sector 
and across all manufactured products

The release of microplastics into the environment through their 
intentional addition to products like fertilizers and pesticides 
can and should be prohibited. Knowledge gaps and uncertainty 
should not preclude or delay regulatory action; the precautionary 

Conclusion and Recommendations: Tackling the Toxic Triad
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synthetic fertilizers and pesticides. Such action is necessary as 
part of the shift away from the fossil economy and a move to-
ward more sustainable methods for food production like organic 
agriculture, permaculture, and agroecology. Contrary to agro-
chemical industry claims, synthetic pesticides174 and fertilizers175 
are unnecessary to feed the world, and their increasing usage 
harms both human and ecosystem health. Setting targets to re-
duce the use of chemical pesticides and fertilizers — and then 
following through on those targets — are essential first steps.176 
Ultimately, protecting health, the environment, and the climate 
requires a systemic shift away from chemical-dependent indus-
trial agriculture to safer and more sustainable farming systems. 

4) Adopt a comprehensive global 
approach to plastics regulation

At the resumed fifth session of the United Nations Environ-
ment Assembly (UNEA-5.2) in 2022, Member States agreed to 
develop an international legally binding instrument on plastic 
pollution, addressing the full life cycle of plastic and plastic pol-
lution in all environments, including microplastics.177 Legally 
binding restrictions on plastic production and its toxic com-
ponents are necessary to address the plastic pollution problem 
broadly, including microplastic accumulation and exposure to 
hazardous substances. Consistent with the mandate and what is 
required to address the plastics crisis effectively, the treaty 
should cover measures along the entire life cycle of plastics, in-
cluding extraction of fossil fuel feedstocks, product design, pro-
duction, transport, use, disposal, and remediation. The treaty 
must take a human rights-based approach to plastics manage-
ment and ensure the meaningful participation of multiple stake-
holders in its negotiations, including farmers, civil society, In-
digenous Peoples, workers and trade unions, women, and chil-
dren and youth. Fulfilling the right to information, which is a 
critical component of a rights-based approach, requires ensuring 
access to information on plastics production, polymer compo-
nents, and chemical additives, which is essential to regulating 
product safety, improving product design, and advancing a cir-
cular economy. With the right provisions, the treaty can also be 
a critical tool to support the above recommendations, including 
a target for the global phaseout of microplastic use in agriculture 
and bans on other non-essential plastics.178 

With the right provisions, a legally binding glob-
al treaty on plastic can also be a critical tool to 
support a target for the global phaseout of mi-
croplastic use in agriculture and bans on other 
non-essential plastic.

Synthetic fertilizers and pesticides have well-documented harm-
ful impacts on human and ecological health. Deliberately add-
ing tiny plastic particles to these agrochemicals — and applying 
those microplastics directly to food crops at a massive scale — 
only compounds these already significant risks and adds to the 
growing plastic pollution crisis. Because such pollution is inten-
tional, not incidental, it can and should be stopped. 

While such measures are both necessary and feasible, they are by 
no means sufficient to confront the widespread, severe, and ris-
ing impacts to human, ecosystem, and planetary health arising 
from the world’s dangerous reliance on pesticides and fertilizers. 
Yet the underrecognized threat from agricultural microplastics 
reflects the deep and fundamental interlinkages between these 
issues. Petroleum-based agrochemicals, plastics, and the oil and 
gas that feed their production and fuel their use are interwoven 
and interdependent facets of the same fossil economy. For de-
cades, the exploration, extraction, and processing of fossil fuels 
for energy and transport and the industries’ need to dispose of 
and, where possible, profit from the waste streams and byprod-
ucts of fossil fuels, have subsidized and incentivized the produc-
tion of petroleum-based plastics, pesticides, and fertilizers in 
ever greater amounts. The accumulating pollution, toxicity, and 
warming from these converging threats are pushing the Earth 
not only beyond critical climate limits, but beyond planetary 
boundaries for chemical pollution, nitrogen deposition, and bio-
diversity loss, among others. The passing of those planetary 
boundaries has been coupled with growing impacts on human 
health, human lives, and human rights that threaten people on 
every continent and of every generation, including generations 
yet to come.

Ultimately, the solutions to these intersecting crises will be as 
interlinked as the fossil fuels and fossil products that drive them. 
Even as ending humanity’s production and use of fossil fuels is 
critical to confronting the climate crisis, it will fundamentally 
transform the economic incentives that drive the overproduc-
tion and overuse of plastics and agrochemicals. Momentum is 
growing toward both a global plastics treaty and national actions 
worldwide to stem the tide of plastic pollution and confront 
plastic’s own significant climate impacts. In turn, the industry’s 
hopes for plastics and petrochemicals as a future driver of fossil 
fuel demand are rapidly fading, compounding the economic and 
regulatory uncertainties confronting the fossil economy. Despite 
decades of warnings and calls for action on agrochemicals from 
scientists, health experts, and affected communities, progress in 
confronting this third leg of the fossil economy’s toxic triad re-
mains limited. But the scientific evidence is clear, public con-
cern is growing, and just as in the contexts of climate change 
and plastics, the world is rapidly recognizing that alternative 
pathways are not only viable, they are attainable. 
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We are increasingly living on a plastic planet. Due to the explosion in plastic production and use, plastic 
pollution has grown exponentially in recent years. Tiny particles of plastic — or microplastic — are 

accumulating across the planet in even the most remote areas, in the air, in water, in soil, in plants, and in 
animals, including in our bodies. Humans are ingesting and breathing plastics and the toxins they contain 

through this continued environmental exposure.
 

One of the least known and most concerning sources of microplastic pollution is their deliberate addition to 
synthetic fertilizers and pesticides used in industrial agriculture. The application of plastic-coated 

agrochemicals to soils and crops directly introduces microplastic into the environment and potentially into the 
food supply. It also compounds the health and environmental hazards posed by agrochemicals themselves.

 
Synthetic fertilizers and pesticides, derived primarily from oil- and gas-based feedstocks, are already some of 
the most toxic substances in use today. Encapsulating them in microplastic, itself fossil fuel in another form, 
only heightens the risks. Because of its deliberate and controlled nature, microplastic pollution from plastic-
coated agrochemicals is especially egregious, but it is also readily preventable. The only barriers are public 

awareness of the problem and political will to tackle it at its source by regulating the plastics industry.
 

Sowing a Plastic Planet: How Microplastics in Agrochemicals Are Affecting Our Soils, Our Food, and Our Future 
exposes the growing use of microplastics in agrochemical products, the industry’s promotion of this practice, 

and its threats to human health and the environment. It concludes that, in the face of known risks and the 
significant probability that plastic-coated fertilizers and pesticides only add to existing harm from toxic 

chemicals and microplastic, their production and use should be banned.

1101 15th Street NW, 11th Floor
Washington, DC 20005 USA

Phone: (202) 785-8700  • www.ciel.org

SOWING A  
PLASTIC PLANET

How Microplastics in Agrochemicals Are 
Affecting Our Soils, Our Food, and Our Future


